SESSION 2010

CAPES
CONCOURS EXTERNE
ET CAFEP

Section : PHYSIQUE ET CHIMIE

COMPOSITION DE CHIMIE AVEC APPLICATIONS

Durée : 5 heures

Calculatrice électronique de poche — y compris calculatrice programmable, alphanumérique ou à écran graphique — à fonctionnement autonome, non imprimaite, autorisée conformément à la circulaire n° 99-186 du 16 novembre 1999. L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Dans le cas où un(e) candidat(e) repère ce qui lui semble être une erreur d'énoncé, il (elle) le signale très lisiblement sur sa copie, propose la correction et poursuit l'épreuve en conséquence.

De même, si cela vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner explicitement.

NB : Hormis l'en-tête détachable, la copie que vous rendrez ne devra, conformément au principe d'anonymat, comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé comporte notamment la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de signer ou de l'identifier.
Autour du cuivre et de la bouillie bordelaise

Les différentes parties de ce problème sont indépendantes et, dans chaque partie, de nombreuses questions sont également indépendantes. L’énoncé est accompagné de plusieurs annexes dont l’une (annexe 3) est à rendre avec la copie.

La bouillie bordelaise est constituée de 80% en masse de sulfate de cuivre pentahydraté et de 20% en masse de chaux éteinte Ca(OH)$_2$. C’est un fongicide découvert en 1880 qui a été à l’origine utilisé pour protéger les vignes du mildiou. La chaux éteinte résulte de l’hydratation contrôlée de la chaux vive CaO.

Données :
- Constante des gaz parfaits : \(R = 8,314 \text{ J.K}^{-1} \text{.mol}^{-1} \)
- Nombre d’Avogadro : \(N_a = 6,02 \times 10^{23} \text{ mol}^{-1} \)
- Numéro atomique : \(Z(\text{H}) = 1 \); \(Z(\text{C}) = 6 \); \(Z(\text{N}) = 7 \); \(Z(\text{O}) = 8 \); \(Z(\text{Ca}) = 20 \)

Masses molaires (g.mol$^{-1}$) :

<table>
<thead>
<tr>
<th></th>
<th>Ca</th>
<th>C</th>
<th>O</th>
<th>H</th>
<th>Ca(OH)$_2$</th>
<th>Cu</th>
<th>Ni</th>
<th>CuSO$_4$.5H$_2$O</th>
<th>K$_2$Cr$_2$O$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,0</td>
<td>12,0</td>
<td>16,0</td>
<td>1,0</td>
<td>74,0</td>
<td>63,5</td>
<td>58,7</td>
<td>249,5</td>
<td>294,0</td>
</tr>
</tbody>
</table>

Données thermodynamiques à 298 K :

<table>
<thead>
<tr>
<th>Substance</th>
<th>Capacité calorifique molaire (J.mol$^{-1}$.K$^{-1}$)</th>
<th>Enthalpie standard de formation ΔH° (kJ.mol$^{-1}$)</th>
<th>Entropie molaire standard S° (J.K$^{-1}$.mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO$_3$ (s)</td>
<td>- 1207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO (s)</td>
<td>- 633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$ (g)</td>
<td>36,9</td>
<td>- 393</td>
<td></td>
</tr>
<tr>
<td>C (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O$_2$ (g)</td>
<td>29,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_2$ (g)</td>
<td>43,7</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>H$_2$O (g)</td>
<td>36,2</td>
<td>-242</td>
<td></td>
</tr>
<tr>
<td>N$_2$ (g)</td>
<td>29,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enthalpie standard de fusion du calcium : $\Delta_{fus}H^\circ$(Ca) = 9,4 kJ.mol$^{-1}$

Tournez la page S.V.P.
Températures de changement d’état :

<table>
<thead>
<tr>
<th></th>
<th>CaCO₃ (s)</th>
<th>CaO (s)</th>
<th>Ca (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température de fusion</td>
<td>1615</td>
<td>2885</td>
<td>1115</td>
</tr>
<tr>
<td>T_F (K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Température d’ébullition</td>
<td>-</td>
<td>-</td>
<td>1757</td>
</tr>
<tr>
<td>T_E (K)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Données pour le cristal d’oxyde de calcium CaO :

Paramètre de maille : a = 481 pm
Rayon du cation : r_+ = 99 pm

Masse volumique de l’eau : ρ_ₑₑₐₑ = 1,00 g.cm⁻³

Constantes d’acidité :

Pour l’acide éthylène diamine tétraacétique,

H₂Y : pKₐ₁ = 2,0 ; pKₐ₂ = 2,7 ; pKₐ₃ = 6,2 ; pKₐ₄ = 10,7

Pour l’acide éthanoïque : pKa = 4,8

Pour le dichromate : Cr₂O₇²⁻ + 3 H₂O = 2 CrO₄²⁻ + 2 H₃O⁺ K = 10⁻¹⁴,7

Potentiels standard à 298K :

<table>
<thead>
<tr>
<th>Couple</th>
<th>S₂O₅²⁻/SO₄²⁻</th>
<th>O₂/H₂O</th>
<th>NO₃⁻/NO</th>
<th>Cu⁺²/Cu</th>
<th>Hg²⁺/Hg(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E°(V)</td>
<td>1,96</td>
<td>1,23</td>
<td>0,96</td>
<td>0,88</td>
<td>0,86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Couple</th>
<th>I₃⁻/I⁻</th>
<th>Cu⁺²/Cu</th>
<th>S₄O₆²⁻/S₂O₃²⁻</th>
<th>H⁺/H₂</th>
<th>SO₄²⁻/SO₃²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>E°(V)</td>
<td>0,54</td>
<td>0,34</td>
<td>0,08</td>
<td>0,00</td>
<td>-0,94</td>
</tr>
</tbody>
</table>

Produits de solubilité à 298K :

<table>
<thead>
<tr>
<th></th>
<th>Ca(OH)₂</th>
<th>Cu(OH)₂</th>
<th>CaSO₄</th>
<th>BaSO₄</th>
<th>BaCrO₄</th>
<th>CuI</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKₛ</td>
<td>5,3</td>
<td>18,6</td>
<td>4,6</td>
<td>10,0</td>
<td>9,9</td>
<td>12,0</td>
</tr>
</tbody>
</table>

Constantes de formation globales à 298K :

log β(CuY²⁻) = 18,8 ; log β(CaY²⁻) = 10,7 ; log β(HgY²⁻) = 21,8

Conductivités molaires limites ioniques à 298K :

<table>
<thead>
<tr>
<th>Ion</th>
<th>1/2 Cu⁺²</th>
<th>1/2 SO₄²⁻</th>
<th>1/2 Ca⁺²</th>
<th>Cl⁻</th>
<th>NO₃⁻</th>
<th>1/2 Ba⁺²</th>
<th>H₂O⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>λᵢₒ (S.cm⁻².mol⁻¹)</td>
<td>54,0</td>
<td>80,0</td>
<td>59,5</td>
<td>76,3</td>
<td>71,4</td>
<td>63,6</td>
<td>349,8</td>
</tr>
</tbody>
</table>

On prendra \(\frac{RT \ln 10}{F} = 0,06 \) V
Partie A : Chimie inorganique

A.1 Préparation de la bouillie bordelaise

A.1.1 Obtention de la chaux vive

Elle est obtenue par calcination du calcaire CaCO₃ dans un four à chaux aux environs de 900 °C.

\[\text{CaCO}_3 (s) = \text{CaO} (s) + \text{CO}_2 (g) \quad (1) \]

Le tracé des courbes enthalpie libre standard de formation, \(\Delta_r G^\circ \), en fonction de la température pour les espèces \(\text{CO}_2 (g), \text{CaCO}_3 (s) \) et \(\text{CaO} (s) \) est représenté en annexe 1.

A.1.1.1 Quelle(s) hypothèse(s) ont été formulée(s) pour que des portions de droites soient obtenues ?

A.1.1.2 Quelle courbe du diagramme est relative à \(\text{CO}_2 (g) \) ? Justifier qualitativement votre réponse.

A.1.1.3 Écrire l’équation de la réaction de formation de l’oxyde de calcium \(\text{CaO} \) solide. Retrouver l’équation de la droite \(\Delta_r G^\circ_b (T) \) pour la formation de l’oxyde de calcium \(\text{CaO} \) pour une température comprise entre 500 K et 1115 K.

A.1.1.4 Retrouver l’équation de la droite \(\Delta_r G^\circ_b (T) \) pour la formation de l’oxyde de calcium \(\text{CaO} \) pour une température comprise entre 1115 K et 1750 K.

A.1.1.5 Associer au numéro des courbes l’espèce correspondante.

A.1.1.6 On considère le système triphasé \(\text{CaCO}_3 (s), \text{CaO} (s), \text{CO}_2 (g) \) où les deux solides sont non miscibles. Calculer la variance de ce système. Commenter la valeur obtenue.

A.1.1.7 Soit \(T_1 \) la température à laquelle \(\text{CaCO}_3 (s), \text{CaO} (s), \text{CO}_2 (g) \) peuvent coexister sous \(P_{\text{CO}_2} = 1 \text{ bar} \).

A.1.1.7.1 Calculer la valeur de \(\Delta_r G_1^\circ (T_1) \) enthalpie libre standard de la réaction (1) dans ces conditions.

A.1.1.7.2 Exprimer l’enthalpie libre standard de la réaction (1), \(\Delta_r G_1^\circ (T) \) en fonction des enthalpies libres standard de formation de \(\text{CaCO}_3 (s), \text{CaO} (s), \text{CO}_2 (g) \).

A.1.1.7.3 A partir de l’annexe 1, déduire graphiquement une valeur approximative de \(T_1 \).

Le four à chaux est un réacteur ouvert à la pression atmosphérique et à une température \(T_2 \) légèrement supérieure à \(T_1 \).

A.1.1.8 Exprimer l’enthalpie libre de la réaction (1) à la température \(T_2 \), \(\Delta_r G_1 (T_2) \), en fonction de l’enthalpie libre standard de la réaction (1) \(\Delta_r G_1^\circ (T_2) \) et du quotient de réaction Q. Que devient l’expression de l’enthalpie libre \(\Delta_r G_1 (T_2) \) pour un système constitué des trois oxydes à la température \(T_2 \), sous \(P_{\text{CO}_2} = 1 \text{ bar} \).

A.1.1.9 Déterminer graphiquement le signe de l’enthalpie libre de la réaction (1) \(\Delta_r G_1 (T_2) \) à la température \(T_2 \) et sous une pression \(P_{\text{CO}_2} = 1 \text{ bar} \).

A.1.1.10 Conclure quant à l’intérêt de travailler à une température \(T_2 \) légèrement supérieure à \(T_1 \).

A.1.2 Le cristal d’oxyde de calcium

L’oxyde de calcium \(\text{CaO} \) est un cristal ionique qui cristallise dans le système de type chlorure de sodium, \(\text{NaCl} \).

A.1.2.1 Donner la structure électronique à l’état fondamental de l’atome de calcium, après avoir énoncé de façon exhaustive les règles qui permettent de l’établir.

A.1.2.2 Quel est le nombre d’oxydation de l’ion calcium dans l’oxyde de calcium \(\text{CaO} \)? Justifier comment ce nombre d’oxydation est en accord avec la structure électronique de l’atome de calcium à l’état fondamental.
A.1.2.3 Représenter la maille de CaO.
A.1.2.4 Déterminer le nombre d'ions présents dans la maille de CaO. Déterminer le nombre de motifs par maille.
A.1.2.5 Définir la coordinence puis déterminer les coordinences [cation] / [cation] ; [cation] / [anion].
A.1.2.6 Établir une relation littérale permettant d'accéder à la masse volumique \(\rho \) du cristal de CaO. Calculer sa valeur.
A.1.2.7 Déterminer une relation entre les rayons ioniques et le paramètre de maille puis calculer la valeur du rayon ionique \(r \) de l’anion.
A.1.2.8 Définir la compacité du cristal de CaO et calculer sa valeur après avoir établi une relation littérale permettant de la déterminer.

A.1.3 Obtention de la chaux éteinte

L’hydroxyde de calcium, ou chaux éteinte, est obtenu par addition d’eau à la chaux vive. La quantité d’eau ajoutée est ajustée de façon à obtenir la chaux éteinte sous forme de poudre sèche.

\[
\text{CaO (s) + H}_2\text{O (l)} = \text{Ca(OH)}_2 \text{ (s)} \quad (2) \quad \Delta H^\circ = -65,5 \text{ kJ.mol}^{-1}
\]

A.1.3.1 Calculer la valeur du volume d’eau exprimé en m³ nécessaire à l’hydratation d’une tonne de chaux vive.
A.1.3.2 Justifier l’introduction de 0,3 m³ supplémentaire à la valeur précédemment calculée.

A.1.4 La bouillie bordelaise

La bouillie bordelaise est constituée de 80% en masse de sulfate de cuivre pentahydraté et de 20% en masse de chaux éteinte \(\text{Ca(OH)}_2 \). Elle est épandue généralement à la dose de 10 g.L\(^{-1}\) sur la vigne.

A.1.4.1 Le sulfate de cuivre est obtenu par dissolution de l’oxyde de cuivre (II) par l’acide sulfurique. Écrire l’équation bilan de cette réaction.
A.1.4.2 Calculer les quantités de matière en hydroxyde de calcium et en sulfate de cuivre pentahydraté qui sont introduites dans 1,00 L de bouillie bordelaise à 10,0 g/L.

A.2 Dosage des ions sulfate libres dans une solution de bouillie bordelaise à 10 g.L\(^{-1}\)

Dans une fiole jaugée de 1,00 L, on introduit 10,0 g de bouillie bordelaise ; de l’eau permutée permet de remplir la fiole jusqu’au trait de jauge. La solution obtenue n’est pas homogène. On filtre le mélange. Soit \(S_0 \) le filtrat. Le but de la partie suivante est de déterminer les teneurs en ions sulfate dans le filtrat \(S_0 \). On considérera que le volume de filtrat \(S_0 \) obtenu est de 1,00L

A.2.1 Étalonnage d’une solution de chlorure de baryum par pH-métrie

Mode opératoire :

A une prise d’essai, \(V_1 = 20,0 \) cm\(^3\) d’une solution de chlorure de baryum (Ba\(^{2+}\)(aq) +2 Cl\(^{-}\)(aq)) de concentration \(C_1 \) en ions baryum, ajouter 0,10 g de dichromate de potassium. Titrer par une solution d’hydroxyde de sodium (Na\(^{+}\)(aq) + OH\(^{-}\)(aq)) de concentration \(C_2 = 6,00.10^{-2} \) mol.L\(^{-1}\).
A.2.1.1 Quelles électrodes sont nécessaires à la réalisation d’un dosage pH-métrique. Préciser le rôle de chacune d’entre elles.

Etude préliminaire :

Dans cette étude préliminaire, on suppose que la concentration C_1 en ions baryum est de l’ordre de $3,0.10^{-2} \text{ mol.L}^{-1}$. On réalise la courbe simulée de ce dosage, présenté en annexe 2. Les volumes équivalents sont notés V_{e1} et V_{e2} avec $V_{e1} < V_{e2}$.

A.2.1.2 Calculer les quantités de matière en ions baryum et en ions dichromate avant toute transformation chimique dans le bécher de dosage.

A.2.1.3 Écrire la réaction chimique entre les ions dichromate et les ions baryum qui entraîne la formation d’un précipité de chromate de baryum BaCrO_4. Calculer la valeur de sa constante d’équilibre après l’avoir exprimée à partir des données de l’énoncé.

A.2.1.4 La transformation étant quantitative, proposer un tableau d’avancement en quantité de matière permettant de décrire l’état du système à l’état final dans le bécher. On ne cherchera pas à déterminer la quantité de matière du réactif en défaut.

A.2.1.5 Calculer la valeur du pH initial dans le bécher avant l’ajout de la solution titrante d’hydroxyde de sodium.

A.2.1.6 Après avoir écrit l’équation de la réaction de dosage associée à la transformation chimique ayant lieu pour $V = V_{e1}$, exprimer la relation littéraire permettant de calculer la valeur de la concentration C_1 en ions baryum en fonction du volume équivalent noté V_{e1}.

A.2.1.7 Quelle réaction de dosage a lieu pour un volume versé compris entre V_{e1} et V_{e2}.

Résultats expérimentaux :

On réalise le dosage et on trouve les deux volumes équivalents suivants : $V_{e1} = 10,1 \text{ mL}$ et $V_{e2} = 11,5 \text{ mL}$.

A.2.1.8 En déduire la concentration en ions baryum C_1 que l’on exprimera sous la forme : $C_1 = C_{\text{calculée}} \pm \Delta C$ pour une précision de 1%.

A.2.2 Dosage conductimétrique des ions sulfate

Le but de cette partie est de déterminer la concentration $C_{\text{SO}_4^{2-}}$ en ions sulfate de la solution S_0.

Mode opératoire :

A la prise d’essai $V_2 = 50,0 \text{ cm}^3$ de solution S_0 à doser, ajouter 150 cm^3 d’eau perméée. Introduire la cellule conductimétrique. Tirer par la solution de chlorure de baryum de concentration $C_1 = 3,00.10^{-3} \text{ mol.L}^{-1}$. Soit V_{e3} le volume équivalent.

Etude préliminaire :

A.2.2.1 L’ajout de 150 mL d’eau perméée permet de négliger l’influence de la dilution sur la valeur de la conductivité. Quel est l’intérêt de se placer dans ces conditions ?

A.2.2.2 Donner la relation générale permettant de déterminer la conductivité σ d’une solution en fonction des espèces responsables de cette conductivité. Préciser les unités des différentes grandeurs utilisées.

A.2.2.3 Avant l’équivalence, la conductivité σ peut se mettre sous la forme : $\sigma = A + B.V$, A et B étant des constantes et V le volume de solution de chlorure de baryum ajouté. Donner l’expression de B. En déduire l’évolution de la conductivité avant l’équivalence.

A.2.2.4 A partir d’une étude qualitative de l’évolution des espèces, prévoir l’allure de la courbe de dosage $\sigma = f(V)$ après l’équivalence.
Résultats expérimentaux :
On réalise le dosage et on trouve le volume équivalent suivant : \(V_{e3} = 13,3 \text{ cm}^3 \).

A.2.2.5 Détecter la concentration molaire volumique en ions sulfate, \(C_{\text{SO}_4^{2-}} \) dans \(S_0 \).

A.2.2.6 En supposant que les ions sulfate qui n’ont pas été dosés sont dans le résidu de filtration de la bouillie bordelaise sous forme de précipité de sulfate de calcium, évaluer la concentration en ions calcium libre dans \(S_0 \). En déduire une valeur approchée du produit de solubilité du sulfate de calcium.

A.3 Dosage des ions cuivre (II) par iodométrie dans une solution \(S_0 \) de bouillie bordelaise à 10 g.L\(^{-1}\)

Le but de la partie suivante est de déterminer les teneurs en ions cuivre (II) dans le filtrat \(S_0 \) dont on rappelle la préparation : dans une fiole jaugée de 1,00 L, on introduit 10,0 g de bouillie bordelaise ; de l’eau permutée permet de remplir la fiole jusqu’au trait de jaugé. La solution obtenue n’est pas homogène. On filtre le mélange. Soit \(S_0 \) le filtrat.

Le dosage des ions cuivre (II) par iodométrie peut être suivi par colorimétrie ou par potentiométrie. L’interprétation de cette deuxième méthode nécessite l’utilisation des courbes intensité-potentiel.

A.3.1 Quelques généralités sur les courbes intensité-potentiel.

Pour tracer la courbe intensité-potentiel d’une solution \(S’ \) de diiode sur électrode de platine, on réalise le montage à trois électrodes présenté ci-contre.

On rappelle qu’une solution de diiode est préparée à partir d’une solution d’iodure de potassium et de cristaux de diiode et que les espèces majoritaires en solutions sont \(K^+ \), \(I^- \) et \(\text{I}_3^- \). Dans la solution \(S’ \) étudiée, la concentration en ions triiodure \([\text{I}_3^-]\) vaut 0,10 mol.L\(^{-1}\) et celle des ions iodure \([I^-]\) vaut 0,60 mol.L\(^{-1}\).

A.3.1.1 Reproduire sur votre copie le schéma du montage ci-dessus et renseigner-le en précisant le nom et le rôle de chacune des trois électrodes, ainsi que le matériel électrique associé à chacun des cercles représentés.

L’allure de la courbe intensité-potentiel obtenue est la suivante :

A.3.1.2 Dans les courbes intensité-potentiel de certains ouvrages techniques, l’intensité est remplacée par la densité de courant \(j \) (en A.m\(^{-2}\)). Quel intérêt pratique y a-t-il à effectuer ce remplacement ?

A.3.1.3 Reproduire sur votre copie la courbe ci-contre et compléter chaque case avec l’espèce électroactive correspondante en respectant le sens des flèches déjà représentées.

A.3.1.4 Au regard de la courbe expérimentale, quels systèmes rédox peuvent être considérés comme rapide ou lent dans ces conditions opératoires. Justifier.

A.3.1.5 Quel paramètre expérimental est susceptible de faire évoluer un système rapide vers un système lent. Citer un exemple.
A.3.1.6 Deux paliers sont observés sur la courbe expérimentale. Quel(s) phénomène(s) physique(s) est (sont) responsable(s) de la limitation du courant ?

A.3.1.7 De quel(s) paramètre(s) dépend la hauteur d’un palier ?

A.3.1.8 Expliquer pourquoi des paliers ne sont pas observés dans les parties extrêmes, gauche et droite de la courbe.

A.3.1.9 Déterminer d’un point de vue théorique le potentiel à courant nul de l’électrode de platine plongeant dans la solution S de diode étudiée. Calculer sa valeur.

A.3.2 Dosage du cuivre (II) par iodométrie : suivi colorimétrique

Mode opératoire :

Dans un bêcher, introduire une prise d’essai V₁ = 25,0 cm³ de la solution S₀.

Ajouter 30 cm³ d’une solution d’iodure de potassium (K⁺(aq) + I⁻(aq)) à 100 g.L⁻¹ (0,600mol.L⁻¹). Attendre 10 minutes.

Titrer par une solution de thiosulfate de sodium (2 Na⁺(aq) + S₂O₃²⁻(aq)) de concentration C₃ = 1,00.10⁻² mol.L⁻¹ en ions thiosulfate.

Étude préliminaire :

A.3.2.1 Écrire l’équation de la réaction traduisant la transformation chimique observée dans le bêcher avant ajout de thiosulfate de sodium, sachant qu’un précipité d’iodure de cuivre (I) se forme. Quelle est a priori la couleur de la solution ?

A.3.2.2 Écrire l’équation de la réaction de dosage.

A.3.2.3 Comment peut-on visualiser l’équivalence ? Quel composé peut-on ajouter avant l’équivalence pour bien la visualiser ?

Résultats expérimentaux :

On réalise le dosage et on trouve le volume équivalent suivant : Vₑ₄ = 12,4 cm³.

A.3.2.4 Déterminer la concentration molaire volumique en ions cuivre, C₅₀⁺₁ dans S₀.

A.3.3 Dosage du cuivre (II) par iodométrie : suivi par potentiométrie

La méthode colorimétrique n’est pas toujours adaptée au dosage du cuivre (II), soit parce que les solutions sont trop peu concentrées, soit parce que l’équivalence n’est pas détectable facilement visuellement (ce qui est d’ailleurs le cas pour la solution S₀, le dosage visuel précédent n’étant pas le plus approprié). Les méthodes potentiométriques peuvent s’avérer pour des concentrations pas trop faibles (supérieures ou égales à 10⁻³ mol.L⁻¹) des méthodes de choix. Deux possibilités sont envisageables, la potentiométrie à courant nul, la potentiométrie à courant imposé. Chacune de ces deux possibilités est donc étudiée ci-après.

Étude théorique préliminaire :

Quatre courbes intensité-potentiel sur électrode de platine ont été tracées pour différents volumes V de solution de thiosulfate de sodium versé au cours de l’expérience précédente. Soit pour V = 0 ; V < Vₑ ; V = Vₑ ; V > Vₑ. Vₑ représente le volume de solution de thiosulfate de sodium versé à l’équivalence. Ces courbes sont représentées en annexe 3.

A.3.3.1 Après avoir déterminé les espèces prédominantes électroactives pour V = 0 ; V < Vₑ ; V = Vₑ ; V > Vₑ, justifier l’allure des courbes intensité-potentiel obtenues et préciser sur les courbes en annexe 3 (à rendre avec la copie) l’origine des vagues d’oxydation et de réduction successives. On rappelle que les ions tétrathionate (S₄O₆²⁻) ne sont pas électroactifs dans l’eau sur électrode de platine, que Cul(s) n’intervient pas dans les courbes intensité-potentiel et que le couple S₄O₆²⁻ / S₂O₃²⁻ est très lent en oxydation sur électrode de platine.
Dosage potentiométrique à courant nul :

Pour suivre le titrage rédox précédent, on introduit dans le bécher une électrode au calomel saturé et une électrode de platine, la différence de potentiel ΔE entre ces deux électrodes est mesurée au cours du dosage, de façon à pouvoir tracer $\Delta E = f(V)$ où V est le volume de solution de thiosulfate de sodium versé.

A.3.3.2 Lorsqu'on effectue ce titrage, on observe qu'après l'équivalence la différence de potentiel mesurée n'est pas stable. Le relevé des mesures n'est possible qu'avant l'équivalence. Expliquer pourquoi à l'aide des courbes intensité-potentiel de l'annexe 3.

Dosage potentiométrique à courant imposé :

Pour suivre ce titrage, on introduit dans le bécher deux électrodes de platine dans lesquelles circule un courant très faible de l'ordre de 1 μA. L'une des électrodes joue donc le rôle d'anode et l'autre de cathode. La différence de potentiel ΔE entre ces deux électrodes est mesurée au cours du dosage, de façon à pouvoir tracer $\Delta E = f(V)$.

A.3.3.3 Représenter sur l'annexe 3 i_a et i_c respectivement courant anodique et cathodique qui circule dans les électrodes avec les conventions en vigueur concernant le tracé des courbes intensité-potentiel. Le tracé sera réalisé sur la courbe obtenue en $V = 0$. L'échelle est de 3 mm pour 1 μA.

A.3.3.4 Pourquoi le courant imposé est-il si faible ?

A.3.3.5 A l'aide du faisceau de courbes intensité-potentiel présenté à l'annexe 3, on souhaite prévoir l'allure de la courbe de titrage que l'expérimentateur devrait obtenir.

A.3.3.5.1 A partir de la courbe intensité-potentiel de l'annexe 3 réalisée avant ajout de thiosulfate, soit à $V = 0$ et en utilisant la question A.3.3.3, déterminer l'ordre de grandeur de ΔE_0, différence de potentiel mesurée entre l'anode et la cathode pour un courant appliqué de 1 μA. On indiquera sur la copie le couple impliqué dans la réaction d'électrolyse à l'anode ainsi qu'à la cathode.

A.3.3.5.2 A partir de la courbe intensité-potentiel réalisée après ajout de thiosulfate et pour $V < V_e$, déterminer à l'aide de l'annexe 3 l'ordre de grandeur de ΔE_1, différence de potentiel mesurée entre l'anode et la cathode pour un courant appliqué de 1 μA. On indiquera sur la copie le couple impliqué dans la réaction d'électrolyse à l'anode ainsi qu'à la cathode.

A.3.3.5.3 A partir de la courbe intensité-potentiel réalisée après ajout de thiosulfate et pour $V = V_e$, déterminer à l'aide de l'annexe 3 l'ordre de grandeur de ΔE_g, différence de potentiel mesurée entre l'anode et la cathode pour un courant appliqué de 1 μA. On indiquera sur la copie le couple impliqué dans la réaction d'électrolyse à l'anode ainsi qu'à la cathode.

A.3.3.5.4 A partir de la courbe intensité-potentiel réalisée après ajout de thiosulfate et pour $V > V_e$, déterminer à l'aide de l'annexe 3 l'ordre de grandeur de ΔE_2, différence de potentiel mesurée entre l'anode et la cathode pour un courant appliqué de 1 μA. On indiquera sur la copie le couple impliqué dans la réaction d'électrolyse à l'anode ainsi qu'à la cathode. Comparer ΔE_g et ΔE_E.

A.3.3.5.5 En déduire l'allure de la courbe de titrage $\Delta E = f(V)$ que l'expérimentateur devrait obtenir.

A.3.3.6 Comment repérer sur la courbe de titrage $\Delta E = f(V)$ le volume équivalent ?

A.3.3.7 Pour tracer cette courbe expérimentalement, est-il souhaitable de resserrer les mesures autour du point équivalent, ou est-ce sans intérêt ? Justifier.
A.3.4 Dosage des ions cuivre (II) par complexométrie

Mode opératoire :
Dans un becher de 150 mL introduire :

\[V_4 = 10,0 \text{ cm}^3 \text{ de solution } S_0 \]

20 cm³ de tampon acétique à la concentration de 1,0 mol/L de pH = 4,8

80 cm³ d’eau bipermutée

10 gouttes de complexe \(\text{HgY}^{2-} \) à 0,025 mol/L⁻¹

Une électrode au calomel saturé et une électrode de mercure

Titrer par une solution d’EDTA disodique (2 Na⁺(aq), H₂Y₂²⁻(aq)) de concentration \(C_4 = 5,00 \times 10^{-3} \text{ mol/L}^{-1} \)

Tracer la courbe décrivant l’évolution de la différence de potentiel entre les deux électrodes, \(\Delta E \) en fonction du volume \(V \) de solution d’EDTA disodique versé.

Partie théorique :
A.3.4.1 À partir des données du début de l’énoncé, calculer la valeur du potentiel standard du couple \(\text{HgY}^{2-}/\text{Hg}(I) \).
A.3.4.2 Exprimer le potentiel de Nernst du couple \(\text{HgY}^{2-}/\text{Hg}(I) \)
A.3.4.3 Indiquer pourquoi et à quelle condition une électrode de mercure est indicatrice de la concentration en \(\text{Y}^{2-} \) et ne dépend que de cette concentration, à température fixée.
A.3.4.4 Déduire de la courbe de dosage présentée en annexe 4 lesquels des ions calcium (II) ou cuivre (II) sont dosés en premier.
A.3.4.5 Ecrire la réaction de dosage des ions calcium (II) par les ions \(\text{HgY}^{2-} \). Calculer sa constante \(K_1 \). Faire de même pour les ions cuivre (constante \(K_2 \). Commenter les valeurs obtenues et justifier l’obtention d’un seul saut de potentiel.
A.3.4.6 Donner les propriétés d’une solution tampon.
A.3.4.7 En supposant que la concentration molaire volumique en ion cuivre (II) est de \(5,0 \times 10^{-3} \text{ mol/L}^{-1} \) dans \(S_0 \), montrer par un calcul que la transformation chimique associée au dosage des ions cuivre (II) est quantitative à la première équivalence, compte tenu de l’utilisation d’un tampon acétique de pH=4,8.

Résultats expérimentaux :

On réalise le dosage et on trouve le volume équivalent suivant : \(V_{eq} = 10,0 \text{ cm}^3 \)
A.3.4.8 Déterminer la concentration molaire volumique en ions cuivre (II), \(C_{\text{Cu}^{2+}} \) dans \(S_0 \).

Comparer \(C_{\text{Cu}^{2+}}^2 \) et \(C_{\text{Cu}^{2+}}^1 \) en supposant pour chacun des deux dosages une précision de 1%.

A.4 Détermination de la teneur en cuivre dans le vin

Le cuivre dans le vin peut provenir d’un traitement de la vigne à la bouillie bordelaise ou encore du contact de matériaux à base de cuivre comme les laitons que l’on trouve encore, notamment dans les pompes les plus anciennes.
A.4.1 Les Alliages de cuivre

On estime que plus de 70% de la production de cuivre est utilisée à l’état de cuivre pur pour la fabrication de fils électriques, de laminés, de tubes. Le reste sert à élaborer les très nombreux alliages de cuivre dont l’importance est considérable. Les plus fabriqués d’entre eux sont les laitons dénommés cuivre jaune. Viennent ensuite les bronzes, les cuproaluminiums, les cupronickels, etc.

A.4.1.1 Quels sont les deux métaux constituant le laiton ?

Les alliages cuivre nickel sont couramment utilisés pour les transports de matériaux corrosifs, la construction mécanique et la fabrication de monnaies. L’annexe 5 représente le diagramme binaire isobare solide-liquide du système cuivre nickel.

A.4.1.2 Indiquer le nombre et la nature des phases dans les domaines I, II et III.

A.4.1.3 Représenter l’allure de la variation de température en fonction du temps lors du réchauffement très lent et régulier d’un alliage de composition 30 % en masse de nickel à partir d’une température de 1000 °C. Justifier par un calcul de variance les variations ou non variations de température.

A.4.1.4 2000 g d’un alliage de composition 30% en masse de nickel est porté à 1200°C. Préciser la composition en masse de chacune des phases.

A.4.2 Dosage par absorption atomique du cuivre II dans le vin.

Les moûts de raisin renferment toujours des doses importantes d’ions cuivrées ; quelques dixièmes de mg/L sont issus de la vigne, mais la majeure partie vient des différents traitements subis. Lors de la fermentation ils sont éliminés avec les levures et les lieux. Ainsi, le vin nouveau n’en contient que 0,2 à 0,3 mg/L ; mais après quelques mois de conservation les vins peuvent en contenir plus, à la suite de contacts avec du matériel en cuivre, en laiton ou en bronze. Dans les vins blancs ou rosés maintenus à l’abri de l’air, les ions cuivrées précipitent à l’état de sulfures qui troublent le vin si la dose de cuivre approche de 1 mg/L. De plus, il favorise l’apparition de la casse blanche (casse ferreuse) en jouant le rôle de catalyseur. Le cuivre est éliminé des vins par traitement au ferrocyanure de potassium ou par le sulfate de sodium qui le précipite à l’état de sulfure. Il est recommandé que la teneur en cuivre du vin ne dépasse pas 0,8 mg/L.

Les teneurs en cuivre dans le vin étant très faibles les méthodes d’analyse précédemment présentées ne conviennent pas. La méthode normalisée de dosage du cuivre dans le vin utilise la technique d’absorption atomique.

Schéma de principe :
L’élément à étudier est sous forme d’ions en solution aqueuse. La solution est nébulisée (projétée en fines gouttelettes à l’aide d’un nébuliseur) dans une flamme. Les ions y sont alors atomisés. La flamme utilisée est obtenue par un mélange air – acétylène. Quand la solution passe dans la flamme, une partie des atomes est excitée, une autre restant à l’état fondamental. L’étude porte sur la population restée à l’état fondamental. On mesure l’absorption de l’élément quand il est éclairé par une source lumineuse de longueur d’onde spécifique caractéristique de l’élément étudié, choisie de façon à ce qu’il puisse absorber la radiation émise par la source. L’absorbance A de la solution suit une loi de type Beer-Lambert (A = K.C_Cu où A est l’absorbance, C_Cu la concentration totale en élément cuivre, K un coefficient propre à chaque élément pour la longueur d’onde choisie). Cette loi n’est valable que pour des concentrations faibles, typiquement inférieure à 3 ppm.

A.4.2.1 A quelle condition une radiation lumineuse peut-elle être absorbée par un atome?
A.4.2.2 Définir l’absorbance A de la solution.
A.4.2.3 Que signifie l’abréviation ppm ?

Évaluation de la température de flamme :

On s’intéresse à la zone de combustion primaire de la flamme, là où le mélange air-acétylène, s’effectue dans les proportions stoechiométriques. On considère que l’air est constitué de 80% de diazote et 20% de dioxygène. C’est le dard de la flamme qui correspond à la zone blanche de la flamme. Les gaz entrent à 298 K dans la flamme sous une pression de 1,0 bar et on admet que le système gazeux évolue de manière adiabatique. L’équation de la réaction de combustion associée à cette transformation chimique est :

\[
C_2H_2(g) + 5/2O_2(g) = 2CO_2(g) + H_2O(g)
\]

A.4.2.4 À partir des données du début de l’énoncé calculer l’enthalpie standard de la réaction de combustion de l’acétylène à 298 K, \(\Delta_{comb}H^\circ(298) \).
A.4.2.5 Calculer alors la valeur de la température des gaz après combustion complète sous une pression constante de 1,0 bar.
A.4.2.6 Pourquoi peut-on faire l’hypothèse d’une transformation adiabatique ?

Dosage de l’élément cuivre dans un échantillon de vin :

Soit une solution étalon S d’ions cuivre (II) à la concentration de 10,00 mg/L.
La méthode préconisée dans le cas du vin, milieu complexe, est la méthode des ajouts dosés. Des quantités connues de la solution étalon S de cuivre (II) sont ajoutées à des prélèvements identiques de l’échantillon de vin. Chaque solution est ensuite diluée jusqu’à un volume donné avant de mesurer en absorption atomique son absorbance.

Mode opératoire :

Préparation des échantillons :

<table>
<thead>
<tr>
<th>Fiole n°</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume d’échantillon de vin (mL)</td>
<td>10,00</td>
<td>10,00</td>
<td>10,00</td>
<td>10,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Volume de solution étalon S (mL)</td>
<td>0</td>
<td>1,00</td>
<td>2,00</td>
<td>3,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Eau ultra pure</td>
<td>Compléter la fiole jaugee de 50 mL au trait de jauge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbance mesurée</td>
<td>0,005</td>
<td>0,039</td>
<td>0,070</td>
<td>0,104</td>
<td>0,139</td>
</tr>
</tbody>
</table>

Tournez la page S.V.P.
A.4.2.7 Calculer les concentrations massiques volumiques C'_E en ions cuivre (II) apportés par la solution étalon S dans chacune des 5 fioles (i allant de 0 à 4).

A.4.2.8 Démontrer, en supposant la loi de Beer Lambert vérifiée, que l'absorbance de la solution A_i de la fiole i peut se mettre sous la forme $A_i = a \cdot C'_E + b$ avec $a = K$ et $b = K \cdot C'_{E_{vin}}$ où $C'_{E_{vin}}$ est la concentration massique en élément cuivre du vin étudié dans les fioles préparées.

A.4.2.9 Après avoir vérifié la linéarité de la courbe expérimentale $A_i = f(C'_E)$, déterminer la concentration massique volumique en ions cuivre (II), $C_{Cu^{2+}}$ dans le vin. Conclure.
Partie B: Chimie organique

Synthèse du 11-Deoxydaunomycine

La 11-deoxydaunomycine est utilisée comme agent antitumoral et entre dans la composition de nombreux médicaments anti-cancer. Les différentes étapes de sa synthèse sont présentées ci après.

Tournez la page S.V.P.
B.1 Etude de l’étape 1
B.1.1 Nommer en nomenclature systématique les deux réactifs qui interviennent dans l’étape 1.
B.1.2 Nommer la réaction chimique qui explique la transformation chimique observée dans l’étape 1
B.1.3 Déterminer la configuration absolue des carbones asymétriques de la molécule formée dans cette étape, en expliquant succinctement votre démarche.
B.1.4 Combien de stéréoisomères de configuration présente-t-elle ? Justifier votre réponse.

B.2 Etude de l’étape 2
B.2.1 Proposer un mécanisme permettant d’expliquer l’étape 2.

B.3 Etude de l’étape 3
B.3.1 Proposer un réactif de choix permettant de réaliser l’étape 3.
B.3.2 En déduire l’équation bilan associée à cette étape.

B.4 Etude de l’étape 4
Dans cette étape, le dérivé chloré, obtenu à l’issue de l’étape 3, est soumis à l’action du cyanure de sodium dans le DMF.
B.4.1 Le DMF est le diméthylformamide ou encore le N,N-diméthylméthanamide. Représenter la formule semi-développée du DMF. Quelles sont les caractéristiques de ce solvant.
B.4.2 Donner le schéma de Lewis de l’ion cyanure.
B.4.3 Nommer précisément le mécanisme réactionnel qui permet d’expliquer l’étape 4. Citer les raisons qui ont motivé le choix de ce mécanisme.
B.4.4 Donner les caractéristiques générales de ce mécanisme.
B.4.5 Sur un exemple bien choisi montrer que cette réaction est stéréosélective et même stéréospécifique.

B.5 Etude de l’étape 7
B.5.1 Quelles sont les fonctions chimiques présentes dans la molécule formée.
B.5.2 Dans l’étape 7, si l’on avait introduit du périodate de sodium en l’absence de RuO₄ mais en présence de tétraoxyde d’osmium, quelle molécule aurait été synthétisée.

B.6 Etude de l’étape 8
B.6.1 Proposer un réactif pour réaliser cette étape.
B.6.2 Représenter soigneusement dans l’espace, le conformère le plus stable du produit formé dans cette étape. Noter R- le groupement CH₃COOCH₂CH₂-

B.7 Etude de l’étape 9
B.7.1 L’organocuprate joue un rôle comparable à un organomagnésien. Ecrire un schéma réactionnel expliquant cette réaction en remplaçant Me₂CuLi par CH₃MgBr.
B.7.2 En fait, en présence de l’organomagnésien CH₃MgBr introduit en large excès et après hydrolyse acide, quel(s) composé(s) aurait-on obtenu(s) ?
B.7.3 Nommer en nomenclature systématique CH₃MgBr
B.7.4 Citer les réactifs nécessaires, ainsi qu’un solvant adapté à la synthèse de CH₃MgBr. Quelles sont les caractéristiques du solvant choisi qui justifient son utilisation.
B.7.5 Préciser les précautions expérimentales.
B.7.6 Représenter le montage expérimental.
B.7.7 La synthèse des organomagnésiens est-elle endothermique ou exothermique? Donner une preuve expérimentale.

B.8 Etude de l’étape 10
B.8.1 Cette étape est réalisée en chauffant à reflux le mélange, quel est le nom de la réaction associé à cette transformation chimique?

B.9 Etude de l’étape 11
B.9.1 Préciser le réactif de choix pour réaliser l’étape 11.

B.10 Etude de l’étape 12
B.10.1 Présenter le mécanisme d’aldolisation de l’éthanal en milieu basique.
B.10.2 Dans l’étape 12, une espèce intermédiaire notée I se forme. Représenter I.
B.10.3 L’intermédiaire I évolue lors du chauffage en milieu basique pour former le composé A. Nommer la réaction présentée dans cette étape.
B.10.4 Proposer un mécanisme réactionnel explicitant la formation de A à partir de I en milieu basique.
 On justifiera la formation préférentielle de cet isomère.
B.10.5 Quelle est la configuration de la double liaison carbone-carbone dans A ?
B.10.6 Mettre en évidence dans A les sites électrophiles. Justifier.
B.10.7 Expliquer à l’aide de Gillespie (ou encore VSEPR) la géométrie de la molécule formée autour des carbones numérotés (1) et (2)
Annexe 1

Evolution, en fonction de la température de l'enthalpie libre standard de formation de CaO, CaCO₃ et CO₂

ΔG° (kJ mol$^{-1}$)

Annexe 2

Dosage d'iode basique en présence de chlorure par de l'hypochlorite de sodium

pH

V (KIO₃) en mL
Annexe 3

A rendre avec la copie

Faisceau de courbes intensité-potentiel réalisé pour différents volumes d’une solution de thiosulfate de sodium versée au cours du dosage d’une solution de diiode.
Annexe 4

Diagramme d'ions cuivre(II) et calcium(II) par le EDTA suivi par potentiométrie

- représentation avec des points joints : Courbe $\Delta E = E - E(\text{ref}) = f(V)$, ordonnée gauche graduée en $10^{-3} \times V$
- représentation avec des \times : quantité de matière $nCa^{2+} = f(V)$, ordonnée droite graduée en $10^{3} \times \text{mol}$
- représentation avec des $+$: quantité de matière $nCu^{2+} = f(V)$, ordonnée droite graduée en $10^{3} \times \text{mol}$

Annexe 5

Diagramme binaire solide liquide isobare du système Cuivre - Nickel